Death Management and Virtual Pursuits: A Virtual Reconstruction of the Minoan Cemetery at Phourni, Archanes

Examining the use of tholos Tomb C and burial building 19 and the role of illumination in relation to mortuary practices and the perception of life and death by the living

Constantinos Papadopoulos

BAR International Series 2082
2010
Death Management & Virtual Pursuits

A Virtual Reconstruction of the Minoan Cemetery at Phourni, Archanes, Examining the Use of Tholos Tomb C and Burial Building 19 and the Role of Illumination, in Relation to Mortuary Practices and the Perception of Life and Death by the Living.

Constantinos Papadopoulos
Death Management & Virtual Pursuits

A Virtual Reconstruction of the Minoan Cemetery at Phourni, Archanes, Examining the Use of Tholos Tomb C and Burial Building 19 and the Role of Illumination, in Relation to Mortuary Practices and the Perception of Life and Death by the Living.

This study is dedicated to my grandmother, Nina
Acknowledgements

Research is never the product of one person's efforts, and certainly this project was no different. It would never have become reality without the help and suggestions of many supportive colleagues, friends and family. My biggest thanks go to Dr Yiannis Papadatos, whose professional collaboration meant a great deal to me. I am grateful for the care with which he supported me, and for the conversations that clarified my thinking on this, and other matters.

I would also like to thank my tutor and supervisor Dr Graeme Earl, who made me delve into the world of virtual reconstructions, and understand their importance in cultural heritage management and archaeological research. His ‘magic hands’ were always there to help, when needed.

Dr Sevi Triantafyllou is another person who influenced much of my work. She gave me the motivation to get down to death management issues in the prehistoric Aegean, and offered her expertise and valuable commentary during my research.

I am also grateful to Dr Ioannis Roussos, who provided me with the data for the illumination, and gave me useful ideas about how to handle this part of my research, and Dr Apostolos Sarris for the provision of the GIS data.

As well, I would like to warmly thank Professor Yannis Sakellarakis for his precious comments, and the opportunity that he gave me to work on the Zominthos project.

I should not forget to thank all my ex-tutors in the University of Crete, namely Nena Galanidou, Iris Tzachili and Eleni Zymi, who shared their classrooms and ideas with me over the years. Their commitment and enthusiasm motivated me to really love my discipline.

My family and friends also provided spiritual support at critical and opportune times: my thanks goes to them to. A number of colleagues and new friends graciously helped. In this regard, I am especially indebted to Lena, who was a great companion during the endless days in the computing lab. Also, I would like to thank Eleftheria for her appreciative comments on my work. Last, but not least, heartfelt thanks go to Efi for her understanding and sympathetic support during this demanding year.
I would like to warmly thank the following people and institutions for providing copyright clearance for publishing their photos:

Alycone Ephemeris: fig. 82

Devlin, K.: fig. 85, 87

Instap Academic Press: fig. 1, 17, 20, 21, 22

Jensen, W. H.: fig. 80

Juvanec, B.: fig. 52

Lentz, R.: fig. 81

Maggidis, C.: fig. 47, 49, 50, 51

Papadatos, Y.: fig. 3, 4, 6, 7

Peltenburg, E.: fig. 9, 10, 11

Roussos, I.: fig. 86

Sakellarakis, Y. & Sapouna-Sakellaraki, E.: fig. 1, 13, 15

Soles, J.: fig. 53

Sundstedt, V.: fig. 83

Thomas, G.: fig. 12

Triantaphyllou, S.: fig. 120

University of California Press: fig. 2

Zányi, E.: fig. 84
Abstract

In the striking event of death, each community produces rituals, not explicitly or exclusively of a funerary nature. This is done in order to maintain both its stability and integrity, while incorporating the living into a fixed system of culturally defined roles and statuses.

The living had an active role in manipulating dead bodies, either for the primary burial or secondary treatment. This means that they entered the tombs or antechambers in order to prepare the deceased for inhumation, and practiced various ceremonies in commemoration of their ancestors, in accord with their attitude towards death. In addition, they were preparing the tombs for forthcoming burials by removing decomposed bodies, or selected parts of them, and lighting fires for small or large scale fumigations.

People were entering in the tombs to practice rituals related to funerary ceremonies, or for practical purposes, however the noisome environment of a poorly ventilated structure full of corpses may suggest that only a small amount of people could simultaneously enter and remain in it. Natural light, or flame light, should have been a key factor by illuminating the interior, and mirroring eschatological beliefs and world views.

Computer based research provides scientists with an alternative reading of the dataset from the Minoan cemetery at Phourni, Archanes. This analysis attempts to evaluate tombs’ architecture, use, visual impact, and their capacity during different time periods, as well as the contribution of light to determine not only practical purposes, but philosophical and religious beliefs as well.
Table of Contents

List of Figures... vii-xvii
List of Tables.. xviii-xix

Introduction...1-2

1. Virtual Reconstructions as a Means of Research, Pedagogy and Dissemination of Archaeological Knowledge - Limitations & Problems: Some Theoretical Considerations..3-4

 2a. Overview...5
 2b. History of Investigation..5
 2c. Archaeological Evidence..5
 2d. Tholos Tomb C and its Structural Features...5-6
 2e. Burial Building 19 and its Structural Features...6
 2f. Aspects of the Burial Cult...6-7
 2g. Parallels...7-8
 2h. Illustrations..8-12

3. Reconstructing the Cemetery...13
 3a. Decision Making Process..13
 3b. Architecture...13-14
 3c. Technical Issues..14
 3d. Reconstructing Alternatives..14
 3e. Illustrations..15-16

4. Reconstructing Tholos Tomb C and Its Finds...17
 4a. Architecture..17
 4b. Finds...17-18
 4c. Reconstructing Alternatives..18
 4d. Technical Issues..18-19
 4e. Illustrations..19-31
5. Reconstructing Burial Building 19 and Its Finds ... 32
 5a. Architecture .. 32
 5b. Finds .. 32-33
 5c. Reconstructing Alternatives .. 33-34
 5d. Technical Issues .. 34
 5e. Illustrations ... 34-48

6. Incorporating Human Models into the Burial Structures ... 49
 6a. Human Models in Virtual reconstructions .. 49
 6b. Decision Making Process &Archaeological Evidence .. 49
 6c. Creating Human Models .. 49
 6d. Illustrations ... 50

7. Natural & Flame Lighting in Phourni .. 51
 7a. The Importance of Light .. 51
 7b. Lighting Devices and Fuels .. 51
 7c. Natural Light and Orientation of the Burial Structures .. 51
 7d. Natural Factors Affecting the Illumination .. 51-52
 7e. Global Illumination & Mental Ray Renderer – Aiming Accuracy ... 52
 7f. Previous Work on the Illumination of Archaeological Scenes ... 52
 7g. Lighting Scenarios .. 53
 7h. Daylight .. 53
 7i. Nightlight ... 53-54
 7j. Sources of Flame Light and their Physical Properties .. 54
 7k. Accurate Flame Illumination .. 54-55
 7l. Technical Issues .. 55
 7m. Tables .. 56-57
 7n. Illustrations ... 58-61

8. Presenting & Interpreting the Results .. 62
 8a. Tholos Tomb C ... 62
 8a.1 First Phase (EMIIA) .. 62
 8a.1.1 Architecture .. 62
 8a.1.2 Use & Ergonomics .. 62
 8a.1.3 Capacity and Human Movement .. 63
 8a.1.4 Natural Illumination ... 63-65
 8a.1.5 Lighting Devices .. 65
 8a.1.6 Illustrations .. 66-84
8a.2 *Second Phase (EMIII-MMIA)*... 85
 8a.2.1 Architecture... 85
 8a.2.2 Use & Ergonomics.. 85
 8a.2.3 Capacity and Human Movement .. 85-86
 8a.2.4 Natural Illumination ... 86-87
 8a.2.5 Lighting Devices.. 87-88
 8a.2.6 Illustrations... 88-106

8b. Burial Building 19.. 107
 8b.1 *First Phase (EMIII-MMIA)* .. 107
 8b.1.1 Architecture... 107
 8b.1.2 Use & Ergonomics.. 107
 8b.1.3 Capacity and Human Movement ... 107
 8b.1.4 Natural Illumination ... 107-109
 8b.1.5 Lighting Devices... 158
 8b.1.6 Illustrations... 159-174
 8b.2 *Second Phase (MMIB - MMIIB)* ... 125
 8b.2.1 Architecture... 125
 8b.2.2 Use & Ergonomics.. 125
 8b.2.3 Capacity and Human Movement ... 125
 8b.2.4 Natural Illumination ... 125-126
 8b.2.5 Lighting Devices... 126
 8b.2.6 Illustrations... 127-141

8c. Destruction of Tholos Tomb C and Burial Building 19 (MMIIB/MMIIIA).. 142
 8c.1 Illustrations... 142

Conclusion... 143-144

Appendix 1: Chronological Table.. 145
Appendix 2: The First Four Phases of the Cemetery – An Overview ... 146
Appendix 3: Structures at Phourni – Chronology & Approximate Height.. 147
Appendix 4: Modelling the Terrain.. 148
Appendix 5: Definitions... 149
Appendix 6: Archaeological Sources & 3d Models.. 150-151

References... 152-162
List of Figures

Figure 1: Map of Crete and the Archanes area. Plan of the Phourni Cemetery after the excavation. Tholos Tomb C and Burial Building 19 are indicated. (Papadatos 2005 & Sakellarakis 1997).

Figure 2: Aerial photo of the central and southern part of the cemetery. Tholos Tomb C and Burial Building 19 are indicated. (Myers 1992).

Figure 3: A Cretan mitato in Zominthos area. A combination of large and small stones has been used, without any bonding material. (Papadatos’ own archive).

Figure 4: As above. In order to counterbalance the forces exerted by the vaulted roof, earth and stones have been used on the top of the roof. (Papadatos’ own archive).

Figure 5: Close-up view of the roofing technique of a mitato in Zominthos archaeological site. (Image Author’s Own).

Figure 6: The Interior of a Cretan mitato in Zominthos archaeological site. Its lower part consists of larger slabs, whereas the upper part is constructed with flat slabs in order to achieve the corbelling technique. (Papadatos’ own archive).

Figure 7: The interior of a Cretan mitato in Zominthos lit by indirect light coming through a relatively low door and an opening on the roof. Window-like openings in the walls are used as cupboards. (Papadatos’ own archive).

Figure 8: A small shepherd’s dwelling in a close to the cemetery. Although the exterior is almost cylindrical, the upper courses of the horseshoe-shaped interior have been constructed using the corbelling technique. (Image Author’s Own).

Figure 9: The Lemba Experimental Village in southern Cyprus. View from the South (Peltenburg, E. 2008)

Figure 10: Roundhouse 1 in Lemba Experimental Village. It has a diameter of 10 metres, and gives an indication of how larger cylindrical burial buildings could have been roofed, especially when the available evidence is not sufficient to suggest a vaulted superstructure (Peltenburg, E. 2008).

Figure 11: Roundhouse 3 in Lemba Experimental Village. It is a possible solution for small cylindrical buildings which were not roofed with the corbelling technique (Peltenburg, E. 2008).

Figure 12: Plans with the different elements comprising the roof of Roundhouse 3. The same stages were followed to reconstruct an alternative for tomb C (Thomas, G. 2005).

Figure 13: A general view of the cemetery, with the Archanes settlement in the background. Most of the burial structures are in a bad state of preservation. (Sakellarakis & Sakellaraki 1997).

Figure 14: Digitisation of the plan of the cemetery in AutoCAD. Rectangles indicate points with known heights used for the construction of the terrain. (Image Author’s Own).

Figure 15: The ‘Archanes House’. The reconstruction of the upper storeys was partly based on this artefact. (Sakellarakis & Sakellaraki 1997).

Figure 16: Schematic reconstruction of the Phourni cemetery during its third phase (MMIA-MMII). View from Southeast. Light grey colours indicate the two burial buildings under examination. (Image Author’s Own).

Figure 17: Plan of Tholos Tomb C. The entrance is at the East - Southeast of the structure. (Papadatos 2005).
Figure 18: The exterior of Tholos Tomb C, after the conservation during which cement was used as bonding material. (Image Author’s Own).

Figure 19: Tholos C interior from the southwest, showing the entrance and the window. (Image Author’s Own).

Figure 20: Tholos C interior from the East. Stratum I, Layer 3. Stones from the collapsed roof. (Papadatos 2005).

Figure 21: Tholos C interior from the West. Stratum II. Larnakes 2-4, 6-10 and pithos. (Papadatos 2005).

Figure 22: Some of the plans showing the distribution of burials and finds, which were used for positioning the objects in the 3d model. A. Distribution of clay vases, seals, and stone, bone and ivory objects in Stratum III. B. Distribution of pendants in Stratum III. C. Distribution of gold bands in stratum III. D. Distribution of obsidian objects in Stratum III. E. Distribution of larnakes in Stratum II. F. Distribution of burials and finds in stratum II. (Papadatos 2005).

Figure 23: Reconstruction of Tholos Tomb C. View from North East. Earth and stones act as a counterweight for the forces exerted by the vaulted roof. (Image Author’s Own).

Figure 24: Reconstruction of Tholos Tomb C. View from North East. Left: Entrance closed with a large slab (not found during excavation). Right: Entrance and window closed with slabs (not found during excavation). (Image Author’s Own).

Figure 25: Close up view of the reconstructed east side of tholos Tomb C. The door is made up with the trilithon principle (three stones). (Image Author’s Own).

Figure 26: View of the interior from the entrance. (Image Author’s Own).

Figure 27: The interior of Tholos Tomb C from the South West side. (Image Author’s Own)

Figure 28: Reconstruction of Tholos Tomb C. Only earth is used as a counterweight for the forces exerted by the vaulted roof. (Image Author’s Own)

Figure 29: The vaulted roof of Tholos Tomb C, showing the corbelling technique. The last stone, which bridges the gap of the last course, is called the capstone. (It was not found during the excavation). (Image Author’s Own).

Figure 30: The vaulted roof of Tholos Tomb C, showing the corbelling technique. No capstone is used. (Image Author’s Own).

Figure 31: Alternative reconstruction of Tomb C, with a height of 2.2 metres, and a rectangular roof made of wooden beams and pressed earth. (Image Author’s Own).

Figure 32: Rectangular roof rendered from the interior. Left: Pressed Earth has been used. Right: Sunlight comes through the beams, as pressed earth has not been used. (Image Author’s Own).

Figure 33: Rectangular roof with a small opening facilitating air ventilation, light and human movement. Right: Rendered from the interior. (Image Author’s Own).

Figure 34: Alternative Reconstruction of Tomb C, based on the parallels from Lemba Lakkous. The entire earth structure of the roof is held in place with layers of stones set in mud around the edge of the wall head. (Image Author’s Own).

Figure 35: Parallel wooden beams, supported by a vertical thick timber comprise the basis for the complicated structure of the roof with parallels from Cyprus. (Image Author’s Own).
Figure 36: Layers of reeds are laid over the rafters, to create a stable and dense surface for the positioning of earth. (Image Author’s Own).

Figure 37: Human models as a scale for the virtual model. Left: Male figure with a height of 1.68 m. Right: Female figure with a height of 1.55 m. (Image Author’s Own).

Figure 38: Reconstructed artefacts for Burial Stratum III of Tholos Tomb C. From top to down: copper objects, seals, beads, pendants, stones objects, golden bands. (Image Author’s Own).

Figure 39: Larnakes for Burial Stratum II of Tholos Tomb C in a test scene. (Image Author’s Own).

Figure 40: Larnakes for Burial Stratum II of Tholos Tomb C, positioned in the tomb. View from South West. (Image Author’s Own).

Figure 41: Various artefacts positioned on the ground of Tholos Tomb C. Bump and displacement maps, which create rough surfaces, have been removed to facilitate the presentation of the objects. View from Above. (Image Author’s Own).

Figure 42: Close-up view of the artefacts found on the ground of Tholos Tomb C, positioned according to the published drawings. (Image Author’s Own).

Figure 43: Although the evidence is scanty due to extensive cleaning operations in Burial Stratum III of Tholos Tomb C, it may have accommodated primary and/or secondary burials. View from the entrance. (Image Author’s Own).

Figure 44: Hypothetical representation of secondary treatment of bones in Tholos Tomb C. View from South West. (Image Author’s Own).

Figure 45: Although the evidence is scanty due to extensive cleaning operations in Burial Stratum III of Tholos Tomb C, it may have accommodated primary burials. Hypothetical representation. View from East. (Image Author’s Own).

Figure 46: Although there is no evidence for any burial containers during the first phase of the Tomb, the use of wooden larnakes should not be excluded. Hypothetical representation. View from South West. (Image Author’s Own).

Figure 47: Plan of Burial Building 19. (Maggidis 1994a).

Figure 48: Burial Building 19 in its current state of preservation from North West. (Image Author’s Own).

Figure 49: Hypothetical reconstruction of Burial Building 19 by Christofillis Maggidis. (Maggidis 1994a).

Figure 50: Plan showing the distribution of finds in Stratum II, Layer 4 of Burial Building 19, according to which the various finds were positioned in the 3d model. (Maggidis 1994a).

Figure 51: The only available visual evidence, apart from trench’s photos for the clay pots found in the two stratums of Burial Building 19. (Maggidis 1994a).

Figure 52a: Spanish Barraca used as stone shelters in vineyards. Their exterior is rectangular while their interior face forms a vault, covered with a mixture of earth and stones (Juvanec, B. 2004).

Figure 52b: El bombo in Sevillano (La Mancha) as shelters for vineyards’ workers. Great quantity of earth and stones is used to counterbalance the weight exerted by the masonry. (Juvanec, B. 2004).
Figure 53: Reconstruction of Gournia Tombs I and II (drawn by Jean Carpenter Efe), showing a possible method of construction for Burial Building 19 (Soles 1992).

Figure 54: Reconstruction of Burial Building 19 based on the published handmade drawing by Christophilis Maggidis. View from South West. Only the south wall reaches the maximum height of the structure (2.5 m.). (Image Author’s Own).

Figure 55: Reconstruction of Burial Building 19 based on the published handmade drawing by Christophilis Maggidis. View from North East. (Image Author’s Own).

Figure 56: Reconstruction of Burial Building 19. View from South West. A rubble wall was constructed to facilitate the positioning of a wooden lintel by bridging the gap between the west and the north side. Hypothetical Reconstruction. (Image Author’s Own).

Figure 57: Reconstruction of Burial Building 19. As above. A rubble wall was constructed in the whole west side to facilitate the positioning of a wooden lintel and create the illusion of a regular house tomb. Hypothetical Reconstruction. (Image Author’s Own).

Figure 58: Reconstruction of Burial Building 19. View from North West. A vaulted or semi-vaulted structure cannot be stable and hold its own weight, if earth or stones have not been put on it to provide constant pressure and act as a counterweight. Hypothetical Reconstruction. (Image Author’s Own).

Figure 59: Left: The interior of Burial Building 19. View from above. Right: The roof of Burial Building 19, made up with the corbelling technique. Top: Roof with capstone. Bottom: Roof without capstone. (Image Author’s Own).

Figure 60: Hypothetical reconstruction of Burial Building 19, which presents the only method of construction of a vaulted roof in order for it to be stable. View from South West. The exterior is rectangular, the interior forms a semi-vault and the gap between the two is filled up with a great amount of earth and stones. The west wall does not exceed the 1 metre. (Image Author’s Own).

Figure 61: Hypothetical reconstruction of Burial Building 19. As above. View from South West. The west wall reaches the maximum height of the structure (2.5 metres). (Image Author’s Own).

Figure 62: Hypothetical reconstruction of Burial Building 19. As above. The whole west wall reaches the maximum height of the structure (2.5 metres) and facilitates the positioning of a wooden lintel. (Image Author’s Own).

Figure 63: Hypothetical reconstruction of Burial Building 19. As above. View from South West. A rubble wall was constructed at the west part to facilitate the positioning of a wooden lintel. (Image Author’s Own).

Figure 64: Hypothetical reconstruction of Burial Building 19. View from South West. The whole building was made up of stones, and the roof was constructed with wooden beams and pressed earth. (Image Author’s Own).

Figure 65: Hypothetical reconstruction of Burial Building 19. View from South West. The whole building was made up of stones and the roof was constructed with wooden beams and schist slabs. (Image Author’s Own).

Figure 66: Hypothetical reconstruction of Burial Building 19. As above. The entrance of the building was blocked by a large mass of limestones. (Image Author’s Own).

Figure 67: Hypothetical reconstruction of Burial Building 19. As above. Human figures as a scale for Burial Building 19. Left: Male figure with a height of 1.68. Right: Female figure with a height of 1.55 m. Height of structure: 2.5 m. Height of door: 1.5 m. (Image Author’s Own).
Figure 68: Hypothetical reconstruction of Burial Building 19. As above. Human figures as a scale for Burial Building 19. Left: Male figure with a height of 1.68. Right: Female figure with a height of 1.55 m. Height of structure: 2.2 m. Height of door: 1.3 m. (Image Author’s Own).

Figure 69: Top: Pottery with materials and decoration for the burial stratums of Building 19. Bottom: Larnakes for Burial Stratum II of Building 19 in a test scene. (Image Author’s Own).

Figure 70: Burial Stratum I of Burial Building 19. View from the Entrance. (Image Author’s Own).

Figure 71: Burial Stratum I of Burial Building 19. View from Above. (Image Author’s Own).

Figure 72: Earth filling of Burial Stratum I of Burial Building 19. View from Above. (Image Author’s Own).

Figure 73: Burial Stratum II, Layer I of Burial Building 19. View from the Entrance. (Image Author’s Own).

Figure 74: Burial Stratum II, Layer I of Burial Building 19. View from Above. (Image Author’s Own).

Figure 75: Burial Stratum II, Layer II of Burial Building 19. View from the entrance. (Image Author’s Own).

Figure 76: Burial Stratum II, Layer II of Burial Building 19. View from above. (Image Author’s Own).

Figure 77: Human Skeletons. Left: Low polygon skeleton with a height of 1.55 m. Right: High polygon skeleton with a height of 1.68 m. (Image Author’s Own).

Figure 78: Human models. Left: Female with a height of 1.55 m. Right: Male with a height of 1.68 m. (Image Author’s Own).

Figure 79: First phase of Burial Building 19. From top to bottom, left to right: Final Gather and Global Illumination enabled, Global Illumination disabled, Global Illumination enabled & Final Gather disabled. (Image Author’s Own).

Figure 80: Elements of the night sky. Not to scale. (Jensen et al. 2001).

Figure 81: The altitude describes the location of an object above the circle of the horizon, from zero to 90 degrees. An object sitting right on the horizon would have an altitude of zero degrees, whereas an object straight up would have an altitude of 90 degrees. The azimuth describes the location of an object on the circle of the horizon, from zero to 360 degrees. 0 degrees azimuth is due north and the measurement increases clockwise. (Lentz, R. 1996).

Figure 82: A screenshot of the software Alcyone Ephemeris, which was used to derive the accurate position of the sun in past times. (http://www.alcyone-ephemeris.info/).

Figure 83: Egyptian Hieroglyphics in Kalabsha lit by sesame oil lamp. (Sundstedt, V. et al. 2004).

Figure 84: Byzantine icon from Cyprus lit by simulated beeswax candle. (Zányi, E. 2007).

Figure 85: Rock cave art in Cap Blanc lit by animal fat lamplight (Devlin et al. 2002).

Figure 86: Knossos Throne Room lit by an animal fat lamp. (Roussos’ own archive).

Figure 87: Pompeii Frescoes lit by olive oil lamp, with furniture to show shadow effects (Devlin et al. 2002).

Figure 88: Burial Stratums II & III of Tholos Tomb C lit by modern lighting bulbs. (Image Author’s Own).

Figure 89: Tholos Tomb C without a capstone at night. (Image Author’s Own).
Figure 90: Second phase of Tholos Tomb C and first phase of Burial Building 19 lit by torch. (Image Author’s Own).

Figure 91: A maximum number of 8 people could have simultaneously entered in the interior of Tholos Tomb C. (Image Author’s Own).

Figure 92: A greater number of people in Tholos Tomb C is not plausible due to the noisome environment and poor ventilation. However, just in terms of its capacity it could have accommodated more than 8 people. (Image Author’s Own).

Figure 93: The amount of people entering in Tholos Tomb C should have never been stable, since successive burials and/or burial containers would have limited the available space. For this phase of the cemetery the evidence is scanty, but wooden burial containers or primary burials can not be excluded. (Image Author’s Own).

Figure 94: First phase of Tomb C. From left to right: Rendered Image, Luminance Value, Illuminance Value. First Row: 30th January 2007 at 7 AM. Second Row: 30th January 2007 at 12 PM. Third Row: 30th January 2007 at 3 PM. Fourth Row: 30th January 2007 at 6 PM. Values in LUX. (Image Author’s Own).

Figure 95: First phase of Tomb C. 30th January 2007 at 12 PM. It is the time of that day that the maximum amount of indirect light reaches the interior of the tomb. Rendered Image & Luminance values in LUX. (Image Author’s Own).

Figure 96: First phase of Tomb C. From left to right: Rendered Image, Luminance Value, Illuminance Value. First Row: 30th April 2007 at 7 AM. Second Row: 30th April 2007 at 12 PM. Third Row: 30th April 2007 at 3 PM. Fourth Row: 30th April 2007 at 6 PM. Values in LUX. (Image Author’s Own).

Figure 97: First phase of Tomb C. 30th April 2007 at 7 AM. It is the time of that day that a ray of light gets directly into the interior of the tomb. Rendered Image & Luminance values in LUX. (Image Author’s Own).

Figure 98: First phase of Tomb C. From left to right: Rendered Image, Luminance Value, Illuminance Value. First Row: 30th July 2007 at 7 AM. Second Row: 30th July 2007 at 12 PM. Third Row: 30th July 2007 at 3 PM. Fourth Row: 30th July 2007 at 6 PM. Values in LUX. (Image Author’s Own).

Figure 99: First phase of Tomb C. 30th July 2007 at 12 PM. It is the time of that day that the maximum amount of indirect light reaches the interior of the tomb. Rendered Image & Luminance values in LUX. (Image Author’s Own).

Figure 100: First phase of Tomb C. From left to right: Rendered Image, Luminance Value, Illuminance Value. First Row: 30th October 2007 at 7 AM. Second Row: 30th October 2007 at 12 PM. Third Row: 30th October 2007 at 3 PM. Fourth Row: 30th October 2007 at 6 PM. Values in LUX. (Image Author’s Own).

Figure 101: First phase of Tomb C. 30th October 2007 at 12 PM. It is the time of that day that the maximum amount of indirect light reaches the interior of the tomb. Rendered Image & Luminance values in LUX. (Image Author’s Own).

Figure 102: Rendered Images and Luminance Values in Lux for the first phase of Tholos Tomb C without a capstone (July 30th 2007 3PM). (Image Author’s Own).

Figure 103: Rendered images and luminance values in Lux for the first phase of Tomb C without a roof (July 30th 2007 3PM). (Image Author’s Own).

Figure 104: Rendered images and luminance values in Lux for the first phase of Tomb C with a wooden roof without earth on top (July 30th 2007 3PM). (Image Author’s Own).

Figure 105: Rendered images and luminance values in Lux for the first phase of Tomb C with a wooden roof without earth on top and a small opening (July 30th 2007 3PM) (Image Author’s Own).
Figure 106: Rendered images and luminance values in Lux for the first phase of Tomb C with a wooden roof with pressed earth on top (July 30th 2007 3PM). (Image Author’s Own).

Figure 107: Rendered images and luminance values in Lux for the first phase of Tomb C with a wooden roof based on the parallels from Lemba Lakkous in Cyprus (July 30th 2007 3PM). (Image Author’s Own).

Figure 108: First phase of Tomb C. Above: Autumnal Equinox 2493 BC. Below: Autumnal Equinox 2620 BC. Rendered Images and Luminance values in LUX. (Image Author’s Own).

Figure 109: First phase of Tomb C. Above: Spring Equinox 2478 BC. Below: Spring Equinox 2619 BC. Rendered Images and Luminance values in LUX. (Image Author’s Own).

Figure 110: First phase of Tomb C. Above: Summer Solstice 2495 BC. Below: Summer Solstice 2619 BC. Rendered Images and Luminance values in LUX. (Image Author’s Own).

Figure 111: First phase of Tomb C. Above: Winter Solstice 2495 BC. Below: Winter Solstice 2619 BC. Rendered Images and Luminance values in LUX. (Image Author’s Own).

Figure 112: Flame Lighting lying on the ground of Tholos Tomb C (1st Phase) (from top to bottom, left to right): Organic Olive oil, Beeswax1, Beeswax2, Organic Sesame Oil, Fat. According to the luminance values the lamps provide illumination locally, which means that can be used for a specific task, rather than to globally illuminate the tomb. (Image Author’s Own).

Figure 113: Flame Lighting carried by humans based on people’s heights (1st Phase of Tholos Tomb C) (from top to bottom, left to right): Organic Olive oil, Beeswax1, Beeswax2, Organic Sesame Oil, Fat. According to the luminance values the lamps provide illumination locally, which means that can be used for a specific task, rather than to globally illuminate the tomb. However, they illuminate a larger area than when lying on the ground. (Image Author’s Own).

Figure 114: Torch with intensity of 1500 candelas providing artificial lighting of approximately 100-130 lux. Rendered Image, Luminance & Illuminance values of the first phase of Tholos Tomb C. (Image Author’s Own).

Figure 115: Interior lighting by moonlight. Rendered Image and Luminance values less than 10 lux of the first phase of Tholos Tomb C. (Image Author’s Own).

Figure 116: Second phase of Tholos Tomb C with a maximum amount of 8 people during the first interment. This number is reduced when more burial containers are introduced. (Image Author’s Own).

Figure 117: Second phase of Tholos Tomb C. The introduction of more larnakes has as a result a further reduction of the available space. When the area opposite the entrance is filled with clay coffins, a maximum number of 4 people could have simultaneously entered in the tomb. (Image Author’s Own).

Figure 118: Second phase of Tholos Tomb C. At the last stages, only a relatively small area in front of the entrance was free. The maximum amount of people who could fit is 4, but if there was need, one more person is still probable. (Image Author’s Own).

Figure 119: Second phase of Tholos Tomb C. When the last interments were made at the area in front of the entrance, the potential number of people should have been dramatically reduced to 1-2 people. (Image Author’s Own).

Figure 120: Top: Exterior of Tholos tomb A (Image Author’s Own) Bottom: Interior of tholos tomb A during a visit a few years ago. The amount of light in the interior can be clearly observed and compared with the rendered images and lighting values for tholos tomb C, which is significantly smaller and shorter. (Triantaphyllou’s Archive).
Figure 121: Second phase of tomb C. From left to right: Rendered Image, Luminance Value, Illuminance Value. First Row: 30th January 2007 at 7 AM. Second Row: 30th January 2007 at 12 PM. Third Row: 30th January 2007 at 3 PM. Fourth Row: 30th January 2007 at 6 PM. Values in LUX. (Image Author’s Own).

Figure 122: 30th January 2007 at 12 PM. Rendered images and luminance values in LUX for two different stages of the second phase of Tomb C. Top: 5 Larnakes. Bottom: 8 Larnakes. (Image Author’s Own).

Figure 123: Second phase of Tomb C. From left to right: Rendered Image, Luminance Value, Illuminance Value. First Row: 30th April 2007 at 7 AM. Second Row: 30th April 2007 at 12 PM. Third Row: 30th April 2007 at 3 PM. Fourth Row: 30th April 2007 at 6 PM. Values in LUX. (Image Author’s Own).

Figure 124: 30th April 2007 at 12 PM. Rendered images and luminance values in LUX for two different stages of the second phase of Tomb C. Top: 5 Larnakes. Bottom: 8 Larnakes. (Image Author’s Own).

Figure 125: Second phase of Tomb C. From left to right: Rendered Image, Luminance Value, Illuminance Value. First Row: 30th July 2007 at 7 AM. Second Row: 30th July 2007 at 12 PM. Third Row: 30th July 2007 at 3 PM. Fourth Row: 30th July 2007 at 6 PM. Values in LUX. (Image Author’s Own).

Figure 126: 30th July 2007 at 12 PM. Rendered images and luminance values in LUX for two different stages of the second phase of Tomb C. Above: 5 Larnakes. Below: 8 Larnakes. (Image Author’s Own).

Figure 127: Second phase of Tomb C. From left to right: Rendered Image, Luminance Value, Illuminance Value. First Row: 30th October 2007 at 7 AM. Second Row: 30th October 2007 at 12 PM. Third Row: 30th October 2007 at 3 PM. Fourth Row: 30th October 2007 at 6 PM. Values in LUX. (Image Author’s Own).

Figure 128: 30th October 2007 at 12 PM. Rendered images and luminance values in LUX for two different stages of the second phase of Tomb C. Above: 5 Larnakes. Below: 8 Larnakes. (Image Author’s Own).

Figure 129: Rendered image and luminance values of the second phase of Tholos Tomb C with a slab blocking the entrance (July 30th 2007 3PM). (Image Author’s Own).

Figure 130: Rendered image and luminance values of the second phase of Tholos Tomb C without a capstone (July 30th 2007 3PM). (Image Author’s Own).

Figure 131: Second Phase of Tomb C. Above: Autumnal Equinox 1900 BC. Below: Autumnal Equinox 2152 BC. Rendered Images and Luminance values in LUX. (Image Author’s Own).

Figure 132: Second Phase of Tomb C. Above: Spring Equinox 2152 BC. Below: Spring Equinox 2239 BC. Rendered Images and Luminance values in LUX. (Image Author’s Own)

Figure 133: Second Phase of Tomb C. Above: Summer Solstice 2152 BC. Below: Summer Solstice 2240 BC. Rendered Images and Luminance values in LUX. (Image Author’s Own).

Figure 134: Second Phase of Tomb C. Above: Winter Solstice 2152 BC. Below: Winter Solstice 2382 BC. Rendered Images and Luminance values in LUX. (Image Author’s Own)

Figure 135: Flame Lighting in Tholos Tomb C (2nd Phase) (from top to bottom, left to right): Organic Olive oil, Beeswax1, Beeswax2, Organic Sesame Oil, Fat. According to the luminance values the lamps provide illumination locally, which means that can be used for a specific task, rather than to globally illuminate the tomb. (Image Author’s Own).

Figure 136: Torch with intensity of 1500 candelas providing artificial lighting of approximately 100 lux. Rendered Image and Luminance values for the second phase of Tholos Tomb C. (Image Author’s Own).

Figure 137: Interior lighting by moonlight. Rendered Image and Luminance values less than 10 lux of the second phase of Tholos Tomb C. (Image Author’s Own).
Figure 138: Burial Building 19 could accommodate a maximum of 4 people. Left: View from above, Right: View from outside. The west face has been removed for illustrative purposes to clearly observe the available space and the changes in ergonomics through time. (Image Author’s Own).

Figure 139: According to the published drawings of the first phase of Burial Building 19, it seems that a small Γ-shaped path is formed from the doorway (A) to the point where an altar was found (C). However, skulls should have rearranged before the next phase of the tomb. (Image Author’s Own).

Figure 140: At the first phase of Burial Building 19 a maximum number of 3 people could have entered in the interior. However due to the density of finds and its small size it is possible that this number was gradually reducing when new interments were made. (Image Author’s Own).

Figure 141: First phase of Burial Building 19. From left to right: Rendered Image, Luminance Value, Illuminance Value. First Row: 30th January 2007 at 7 AM. Second Row: 30th January 2007 at 12 PM. Third Row: 30th January 2007 at 3 PM. Fourth Row: 30th January 2007 at 6 PM. Values in LUX. (Image Author’s Own).

Figure 142: First phase of Burial Building 19. 30th of January 2007 at 3 PM. It is the time of that day that the tomb is lit by a direct ray of light. Rendered Image & Luminance values in LUX. (Image Author’s Own).

Figure 143: First phase of Burial Building 19. From left to right: Rendered Image, Luminance Value, Illuminance Value. First Row: 30th April 2007 at 7 AM. Second Row: 30th April 2007 at 12 PM. Third Row: 30th April 2007 at 3 PM. Fourth Row: 30th April 2007 at 6 PM. Values in LUX. (Image Author’s Own).

Figure 144: First phase of Burial Building 19. 30th of April 2007 at 6 PM. It is the time of that day that the tomb is lit by a direct ray of light. Rendered Image & Luminance values in LUX. (Image Author’s Own).

Figure 145: First phase of Burial Building 19. From left to right: Rendered Image, Luminance Value, Illuminance Value. First Row: 30th July 2007 at 7 AM. Second Row: 30th July 2007 at 12 PM. Third Row: 30th July 2007 at 3 PM. Fourth Row: 30th July 2007 at 6 PM. Values in LUX. (Image Author’s Own).

Figure 146: First phase of Burial Building 19. 30th of July 2007 at 6 PM. It is the time of that day that the tomb is lit by a direct ray of light. Rendered Image & Luminance values in LUX. (Image Author’s Own).

Figure 147: First phase of Burial Building 19. From left to right: Rendered Image, Luminance Value, Illuminance Value. First Row: 30th October 2007 at 7 AM. Second Row: 30th October 2007 at 12 PM. Third Row: 30th October 2007 at 3 PM. Fourth Row: 30th October 2007 at 6 PM. Values in LUX. (Image Author’s Own).

Figure 148: First phase of Burial Building 19. 30th of October 2007 at 6 PM. It is the time of that day that the tomb is lit by a direct ray of light. Rendered Image & Luminance values in LUX. (Image Author’s Own).

Figure 149: The interior of Burial Building 19 during its first phase on 30th July 2007 at 3PM, lit by direct and indirect sunlight through the doorway and the roof. Rendered Images and Luminance values in LUX. (Image Author’s Own).

Figure 150: The interior of Burial Building 19 during its first phase on 30th July 2007 at 3PM, receiving a greater amount of direct and indirect illumination since the west side has a wider opening. Rendered Image and Luminance values in LUX. (Image Author’s Own).

Figure 151: First phase of Burial Building 19. Above: Autumnal Equinox 2152 BC. Below: Winter Solstice 2152 BC. Rendered Images and Luminance values in LUX. (Image Author’s Own).

Figure 152: First phase of Burial Building 19. Above: Spring Equinox 2152 BC. Below: Summer Solstice 2152 BC. Rendered Images and Luminance values in LUX. (Image Author’s Own).
Figure 153: Flame Lighting in Burial Building 19 (1st Phase) on 30th October 2007 at 7AM (from top to bottom, left to right): Organic Olive oil, Beeswax1, Beeswax2, Organic Sesame Oil, Fat. According to the luminance values the lamps provide illumination locally, which means that can be used for a specific task, rather than to globally illuminate the tomb. (Image Author’s Own)

Figure 154: Flame Lighting in Burial Building 19 (1st Phase) on 30th October 2007 at 7AM, carried by humans based on people’s heights (from top to bottom, left to right): Organic Olive oil, Beeswax1, Beeswax2, Organic Sesame Oil, Fat. According to the luminance values the lamps provide illumination locally, which means that can be used for a specific task, rather than to globally illuminate the tomb. However, they illuminate a larger area than when lying on the ground. (Image Author’s Own).

Figure 155: Torch with intensity of 1500 candelas providing artificial lighting of approximately 100 lux on 30th October 2007 at 7AM. Rendered Image, Luminance & Illuminance values for the first phase of Burial Building 19. (Image Author’s Own).

Figure 156: Interior lighting by moonlight. Rendered Image and Luminance values less than 10 lux for the first phase of Burial Building 19. (Image Author’s Own).

Figure 157: Burial Building 19 at the second phase. During the initial interments a maximum of three people could have entered in the tomb, whereas at the later stages the number should have reduced to one or two people. A narrow path seems that it was created from the entrance to the right side to facilitate the human movement during the initial depositions (Image Author’s Own).

Figure 158: During the last stages of Burial Building 19, people probably had to stay either outside the building or near the entrance due to the density of burial containers and offerings in the interior. (Image Author’s Own).

Figure 159: The density of burials may indicate that either no or only a very limited number of primary burials were made, probably at the south part of the Building 19, where the deposition is sparser. (Image Author’s Own).

Figure 160: Second phase of Burial Building 19. From left to right: Rendered Image, Luminance Value, Illuminance Value. First Row: 30th January 2007 at 7 AM. Second Row: 30th January 2007 at 12 PM. Third Row: 30th January 2007 at 3 PM. Fourth Row: 30th January 2007 at 6 PM. Values in LUX. (Image Author’s Own).

Figure 161: Second phase of Burial Building 19. 30th January 2007 at 6 PM. It is the time of that day that the tomb is lit by a direct ray of light. Rendered Image & Luminance values in LUX. (Image Author’s Own).

Figure 163: Second phase of Burial Building 19. 30th April 2007 at 6 PM. It is the time of that day that the tomb is lit by a direct ray of light. Rendered Image & Luminance values in LUX. (Image Author’s Own).

Figure 164: Second phase of Burial Building 19. From left to right: Rendered Image, Luminance Value, Illuminance Value. First Row: 30th July 2007 at 7 AM. Second Row: 30th July 2007 at 12 PM. Third Row: 30th July 2007 at 3 PM. Fourth Row: 30th July 2007 at 6 PM. Values in LUX. (Image Author’s Own).

Figure 165: Second phase of Burial Building 19. 30th August 2007 at 6 PM. It is the time of that day that the tomb is lit by a direct ray of light. Rendered Image & Luminance values in LUX. (Image Author’s Own).

Figure 166: Second phase of Burial Building 19. From left to right: Rendered Image, Luminance Value, Illuminance Value. First Row: 30th July 2007 at 7 AM. Second Row: 30th July 2007 at 12 PM. Third Row: 30th July 2007 at 3 PM. Fourth Row: 30th July 2007 at 6 PM. Values in LUX. (Image Author’s Own).
Figure 167: Second phase of Burial Building 19. 30th October 2007 at 6 PM. It is the time of that day that the tomb is lit by a direct ray of light. Rendered Image & Luminance values in LUX. (Image Author’s Own).

Figure 168: The interior of Burial Building 19 during its first phase on 30th July 2007 at 3PM, lit by direct and indirect sunlight through the doorway and the roof. Rendered Images and Luminance values in LUX. (Image Author’s Own).

Figure 169: The interior of Burial Building 19 during its first phase on 30th July 2007 at 3PM, receiving a greater amount of direct and indirect illumination since the west side has a wider opening. Rendered Image and Luminance values in LUX. (Image Author’s Own).

Figure 170: Second phase of Burial Building 19. Above: Autumnal Equinox 1900 BC. Below: Winter Solstice 1902 BC. Rendered Image and Luminance values in LUX. (Image Author’s Own).

Figure 171: Second phase of Burial Building 19. Above: Spring Equinox 1991 BC. Below: Summer Solstice 1900 BC. Rendered Image and Luminance values in LUX. (Image Author’s Own).

Figure 172: Flame Lighting in Burial Building 19 (2nd Phase) on 30th October 2007 at 7 AM (from top to bottom, left to right): Organic Olive oil, Beeswax1, Beeswax2, Organic Sesame Oil, Fat. According to the luminance values the lamps provide illumination locally, which means that can be used for a specific task, rather than to globally illuminate the tomb. However, the same amount of lamps in tholos tomb C gives a slightly different result owing to its dimensions and the area occupied by burials and offerings. (Image Author’s Own).

Figure 173: Torch with intensity of 1500 candelas providing artificial lighting of approximately 100 lux on 30th July 2007 at 7AM. Rendered Image, Luminance & Illuminance values of the second phase of Burial Building 19. (Image Author’s Own).

Figure 174: Interior lighting by moonlight. Rendered Image and Luminace values less than 10 lux for the second phase of Burial Building 19. (Image Author’s Own).

Figure 175: Destruction of Tholos Tomb C using Reactor (Image Author’s Own).

Figure 176: Destruction of Burial Building 19 using Reactor (Image Author’s Own).

Figure 177: Contour lines and digitised plan of the cemetery in AutoCAD (left), Terrain & Contour lines (TIN) and Digital Elevation Model in Arc MAP (right). (Image Author’s Own).

Figure 178: A simple terrain model produced in 3dsMax with the compound object ‘terrain’ based on the contour lines of the region. The arrow indicates the area occupied by the Phourni cemetery. (Image Author’s Own).
List of Tables

Table 1: Burial Structures used up to the fourth phase of the cemetery.

Table 2: Azimuth and Altitude values in decimal degrees for the most important astronomical events in a year.

Table 3: X, Y & Z channels and the corresponding RGB values for each type of fuel.

Table 4: RGB values for different fuel types.

Table 5: Luminance and Illuminance values in LUX for 30th of January 2007 at 7AM, 12PM, 3PM & 6PM (1st phase of Tholos Tomb C).

Table 6: Luminance and Illuminance values in LUX for 30th of April 2007 at 7AM, 12PM, 3PM & 6PM (1st phase of Tholos Tomb C).

Table 7: Luminance and Illuminance values in LUX for 30th of July 2007 at 7AM, 12PM, 3PM & 6PM (1st phase of Tholos Tomb C).

Table 8: Luminance and Illuminance values in LUX for 30th of October 2007 at 7AM, 12PM, 3PM & 6PM (1st phase of Tholos Tomb C).

Table 9: Luminance and Illuminance values in LUX for 30th of January 2007 at 7AM, 12PM, 3PM & 6PM (2nd Phase of Tholos Tomb C).

Table 10: Luminance and Illuminance values in LUX for 30th of April 2007 at 7AM, 12PM, 3PM & 6PM (2nd Phase of Tholos Tomb C).

Table 11: Luminance and Illuminance values in LUX for 30th of July 2007 at 7AM, 12PM, 3PM & 6PM (2nd Phase of Tholos Tomb C).

Table 12: Luminance and Illuminance values in LUX for 30th of October 2007 at 7AM, 12PM, 3PM & 6PM (2nd Phase of Tholos Tomb C).

Table 13: Luminance and Illuminance values in LUX for January 2007 at 7AM, 12PM, 3PM & 6PM (2nd Phase of Burial Building 19).

Table 14: Luminance and Illuminance values in LUX for April at 7AM, 12PM, 3PM & 6PM (2nd Phase of Burial Building 19).

Table 15: Luminance and Illuminance values in LUX for January at 7AM, 12PM, 3PM & 6PM (2nd Phase of Burial Building 19).

Table 16: Luminance and Illuminance values in LUX for January at 7AM, 12PM, 3PM & 6PM (2nd Phase of Burial Building 19).
Table 19: Luminance and Illuminance values in LUX for July 2007 at 7AM, 12PM, 3PM & 6PM (2nd Phase of Burial Building 19).

Table 20: Luminance and Illuminance values in LUX for January 2007 at 7AM, 12PM, 3PM & 6PM (2nd Phase of Burial Building 19).

Table 21: Minoan chronological table adapted from Sakellarakis & Sakellarakis 1997

Table 22: Structures at Phourni: chronologies, remains, approximate height

Table 23: Evidence and evaluation of the three-dimensional models produced
Introduction

The importance of death to the living has always attracted the interest of scholars, not only in archaeology, but in a range of disciplines including sociology, psychology and even pedagogy. Most of the times interdisciplinary approaches are used, in order to promote a better understanding of this complicated issue and appreciate its impact on the lives of each individual. The burial cult of each society is definitively unique and death is experienced in a variety of ways, having distinctive characteristics in each living community which derive from its beliefs, the precepts of their ancestors and the perception of an afterlife.

The funerary process is a means of repairing the damage caused to the social fabric of the community by the death of an individual, and of re-stating the stability of the society (Branigan 1993: 119). Cemeteries constitute a social arena, and funerary practices are rituals in which individuals or social groups deconstruct, reproduce or challenge social organisation. The latter are also powerful means, in the hands of individuals or groups of individuals, to achieve important social goals, such as displays of economic or political power (Shanks & Tilley 1982: 129-154).

Burials and funerary rituals in the Aegean Bronze Age are have been extensively discussed over the years, thanks to the archaeological finds which provide fertile ground for theories and data about the perception of death and the afterlife. However, both the shortage of information, as well as the poor documentation of excavations, makes the analysis of burial practices hazardous. This results in a general unwillingness to consider the social dimension of burial customs, and often limits the publications to comprehensive lists of artefacts, without any contribution to a further understanding of the social implications of death.

Because no similar efforts have been undertaken to visualise Greek burial buildings, this project will provide new insights into the Minoan burial cult, by creating a virtual reconstruction of Tholos Tomb Gamma (THC) and Burial Building 19 (BB19), which are located in the cemetery at Phourni, Archanes. Consideration will be given to the possible interpretations of the available archaeological evidence, while providing a written and visual companion for approaching intriguing and controversial archaeological datasets. It will also address the principles and ethics confronted in the project. In addition, several hypotheses about the ergonomics of the two buildings will be examined, in conjunction with the various rituals which may have taken place in the interior of the structures. As light is fundamental to religious context, and its symbolism pervades the geography of sacred landscapes, it is of major importance to examine the role that natural and flame light would have inevitably played during specific funerary rites at Phourni, either for practical or other purposes. Lastly, existing theories, relating the orientation of the buildings and the natural light to the perception of life and death by the living, will be critically examined.

The first chapter provides a brief discussion of the controversial issues that should be taken into account when a representation of the past – virtual or not – are produced. This is important, as the extensive consideration and analysis of known problems and limitations can result in a more faithful and scientific end product.

A short introduction to the study area is the subject of the next chapter, summarising the archaeological evidence for the two buildings under discussion, while presenting some aspects of the Minoan burial cult, which are considered essential in order to understand the research questions and the aims of this project. Lastly, the parallels that were used to reconstruct a reliable version of the cemetery will be mentioned.

In the next three chapters, the decision making process for reconstructing the cemetery, Tholos Tomb C and Burial Building 19 will be discussed, along with any technical or other issues which occurred during the modelling process. The incorporation of human models in the two structures will be pointed out in the eighth chapter. The illumination study will be extensively examined in the following section, with reference to the importance of light in a funerary context, the factors that affect natural illumination, the various fuel types and lighting devices of the past, as well as the previous work in this field and the lighting scenarios that are going to be tested.

The last chapter is a thorough discussion of the results of this research, and it attempts to interpret the results according to their cultural, social and ritual context, providing Minoan archaeology with a new approach to the study
of the death management system and the spiritual pursuits of the living.

Lastly, the closing section draws conclusions from the research discussed, and controversial issues about the role and purpose of virtual reconstructions in archaeologists’ research are addressed.

In the accompanying CD-ROM there is a colour copy of the book and separate folders with all the plans, drawings and 3D images included in this. There is also additional material, such as two panoramas of Tholos Tomb C and Burial Building 19, extra three-dimensional images and photographs from the Phourni cemetery, as well as a digital representation of ground surface topography of the wider area (DEM).